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Summary. A new method of MCSCF wave function optimization is presented. 
This method is based on a nonlinear transformation of the wave function 
variation coordinates along with the construction of a global interpolating 
function. This interpolating function is constructed for each MCSCF iteration in 
such a way that it reproduces certain known behavior of the exact energy 
function. It reproduces exactly the energy, gradient, and hessian at the expansion 
point, at an infinite number of  isolated points, and at points on the surfaces of  
an infinite number of  nested multidimensional balls within the wave function 
variational space. The optimization of the wave function correction parameters 
on this interpolating function does not require integral transformations or 
density matrix constructions, although one-index transformation and transition 
density matrix techniques may be used if desired. The nonlinear coordinate 
transformations, along with the necessary derivatives, are computed with simple 
matrix operations, and require only O(N3or») effort. The new method differs from 
previous optimization methods in several respects. (1) It reproduces certain 
behavior of the exact energy function that is not displayed by previous ap- 
proaches. (2) The orbital-state coupling is included explicitly via the partitioned 
orbital hessian matrix. (3) The minimization of the approximate energy function 
is simpler than with previous similar approaches. (4) The treatment of redundant 
orbital rotations is straightforward, since the exact and approximate energy 
functions display the same qualitative behavior with respect to these wave 
function variations. (5) Finally, the present method may be implemented as a 
simple extension to essentially any existing second-order MCSCF code, the 
required changes being localized within a rather small part of  the overall iterative 
procedure. Examples of the convergence of the new method are presented, along 
with numerical demonstrations of  some of the relevant features of the exact and 
interpolated energy functions. 
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1. Introduction 

Professor Ruedenberg and his research group have made many significant 
contributions to the methodology of the computation and to the interpretation 
of MCSCF wave functions. The author's own work in this field has been 
influenced particularly by Professor Ruedenberg's contributions in the late 1970s 
when, as a student, I had the opportunity to see hirn speak on several occasions 
on the FORS (Fully Optimized Reaction Space) wave function expansion, and 
on MCSCF wave function optimization using natural orbitals from the single- 
excitation configuration interaction wave function. It is a particular pleasure to 
have made the first presentation of this MCSCF method at the Ames Labora- 
tory, Iowa State University Workshop in Honor of Professor Ruedenberg, "Ab 
Initio Methods in Quantum Chemistry" and to include this contribution in the 
proceedings of this meeting. 

The problem of local convergence of MCSCF wave function optimization 
was essentially solved with the development of the exponential operator formal- 
ism [1-5]. This provided the basis for a coupled treatment of the orbital rotation 
parameters and the configuration state function (CSF) rotation parameters, and 
led to the first implementations of fully second-order convergent optimization 
procedures applicable to general MCSCF wave function expansions [4-6]. This 
formalism, along with its accompanying commutator expansions, also provided 
the basis for a more complete understanding of redundant orbital rotations [7], 
of the relation between optimization methods based on Taylor expansions and 
those based on hamiltonian operator representations [8, 9], of the relation 
between response theory and the multiconfigurational generalization of coupled- 
perturbed Hartree-Fock theory [1, 10], and of the nature of analytical energy 
derivatives [ 11 - 15]. 

The use of matrix partitioning techniques, leading to the analysis based on 
the partitioned orbital hessian matrix [8, 16], provided further insight into the 
nature of the MCSCF wave function, particularly for excited electronic states. 
For excited stares, it was demonstrated that the minimization of the appropriate 
hamiltonian matrix eigenvalue with respect to orbital rotations was not equiva- 
lent to minimization of the expectation value with respect to orbital rotations. 
This equivalence had historically been a tacit assumption of MCSCF orbital 
optimization. The correct conceptual connection is between the minimization of 
the hamiltonian eigenvalue and the minimization of an effective energy expres- 
sion, the first- and second-order terms of which are the orbital gradient and the 
partitioned orbital hessian. This subtle distinction between an expectation value 
and an eigenvalue results in the somewhat surprising condition that an eigenvalue 
minimum may, in fact, correspond to a maximum of the expectation value with 
respect to a particular orbital rotation variation [7, 8]. 

However, the straightforward use of second-order expansions does not 
eliminate the global convergence problems associated with MCSCF wave func- 
tion optimization. Some aspects of these problems have been addressed using 
various approaches. Mode-specific level-shifting methods [17], approximate 
Super-CI methods [8, 16] (also called augmented hessian methods [5], rational 
function methods [7], and norm-extended methods [18]), the iterative and 
perturbative inclusion of specific higher-order terms [18], and nonlinear changes 
of expansion variables [6, 19] are examples of some of these approaches. All of 
these approaches are closely related, particularly from the point of view that an 
approximate energy function is constructed in some manner, the optimization of 
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which is easier than the optimization of the exaet energy function, and the wave 
function corrections derived from this approximate energy function are applied 
iteratively to the exact wave function until convergence is achieved. 

The present method employs the idea of a nonlinear change of coordinate in 
order to reproduce within an approximate energy function certain known 
properties of the exact energy function. I t  differs from previous optimization 
methods in several respects. (1) It reproduces certain behavior of the exact 
energy function that is not displayed by previous approaches. (2) The orbital- 
stare coupling is included explicitly via the partitioned orbital hessian matrix. (3) 
The minimization of the approximate energy function is simpler than with 
previous similar approaches. (4) The treatment of redundant orbital rotations is 
straightforward, since the exact and approximate energy functions display the 
same qualitative behavior with respect to these wave function variations. (5) 
Finally, the present method may be implemented as a simple extension to 
essentially any existing second-order MCSCF code, the required changes being 
localized within a rather small part of the overall iterative procedure. 

The following section contains a brief summary of the previous MCSCF 
methods that are most closely related to the new method, herein called multidi- 
mensional trigonometric interpolation. Section 3 describes this new method and 
the associated nonlinear coordinate transformation. Section 4 extends the discus- 
sion of exact and approximate energy functions to include the effects of redun- 
dant orbital rotation variables. Section 5 contains numerical examples of some of 
the relevant issues related to the method of trigonometric interpolation. Exam- 
ples of MCSCF optimization using the new method are given in Sect. 6. 
Concluding remarks and discussions of future directions of research are then 
given in Sect. 7. 

2. Review of previous work 

The exponential operator parameterization of the orbital rotation space is based 
on the intimate connections between the hilbert space operator exp(K), the 
matrix representation of this operator in a many-electron basis, (m I exp(K) In), 
and the orbital rotation matrix exp(K) of dimension Norb. The orbital rotations 
are defined by the matrix: 

1 1 2 U = e x p ( K ) = I + K + ~ K  + . . . + ~ . K " + . . . .  (2.1) 

As usual for molecular calculations, it will be assumed that K, and therefore U, 
are real matrices. If K is antisymmetric (i.e. K = --KT; also, such matrices are 
called skew-symmetric), then U is an orthogonal matrix with Der(U) = + 1. The 
operator exp(K) is defined as: 

1 
exp(K) = 1 + K + I K 2 + . . .  n.V K n + ' ' "  (2.2) 

in which the one-electron operator K is defined in terms of the matrix elements 
of K as: 

Norb Norb 
K =  2 2 KrsErs" ( 2 . 3 )  

r = l s = l  
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The operators E~s = aßasù + a~pas~ are usually called "generators" of the unitary 
group due to their commutation properties (see Ref. [7] and references therein 
and additionally Ref. [20] for further details). As indicated, these generators may 
be represented in terms of electron creation and annihilation operators, thereby 
allowing the hamiltonian operator to be written as: 

H = ~" hrsErs + ½ ~, grstuerstu (2.4) 
rs rstu 

with erstu = ErsEtu - 6stEru being the normal-order product, and with the summa- 
tions ranging over the entire orthonormal orbital basis. The arrays h and ga re  
the one-electron hamiltonian and two-electron repulsion integrals respectively. 
The rotations within the CSF space are parameterized with the unitary operator 
exp(P), defined with: 

P = Z en(In>O[-10><n[)  (2.5) 
n(#0) 

in which 10> is the reference wave function and the summation ranges over the 
orthogonal complement to ]0> within the MCSCF expansion space. Computa- 
tionally, it is most convenient to represent the operator P in the overcomplete 
CSF basis, or the closely related, linearly dependent, projected basis. The merits 
of various bases for the representation of the operator P are discussed in detail 
in Ref. [7]. 

The unitary operators exp(K) and exp(P) allow the exact MCSCF energy 
expression in terms of the rotation parameters {Krs, Pn } to be written as: 

EE~«t(K, p) = <0lexp(-P) exp( - K ) H  exp(K) exp(P)10>. (2.6) 

Expansion through second order in these parameters leads to the matrix expres- 
sion 

As customary, the vector K contains only the unique, essential (i.e. nonredun- 
dant), elements of the orbital rotation array K. The vectors w and vare  the 
gradient vectors for the orbital and CSF rotation parameters respectively. The 
matrix B is the orbital-orbital hessian matrix, C is the orbital-CSF block of the 
hessian matrix, and M is the CSF-CSF hessian matrix. 

Given a set of CSF coefficients and orbitals to define a reference wave 
function, the construction of the gradient vector and hessian matrix provides an 
approximate energy function, Et2](K,p), which may be used to determine the 
correction vectors K and p. These corrections may be applied to the reference 
wave function (i.e. by applying the orbital transformation matrix U to the 
orbitals, and the operator exp(P) to the CSF coefficients) in order to define a new 
reference wave function. This straightforward procedure is the wave function 
hessian Newton-Raphson (WNR) optimization method. 

If the optimal CSF vector is determined for the reference orbitals, then the 
CSF gradient vector v vanishes. The CSF correction vector p from optimization 
of Eq. (2.7) then satisfies the relation: 

p = - M - 1 C r K .  (2.8) 
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When substituted into E[2] (K ,p ) ,  this leads to an energy expression that depends 
explicitly only on the orbital rotation parameters. 

Et21(K) = E(0) + ~rw + 1Kr(B -- CM-1Cr)K. (2.9) 

The matrix ( B -  CM-1C r) is the partitioned orbital hessian matrix. These 
matrix elements are the second derivatives of the hamiltonian eigenvalue with 
respect to pairs of orbital rotations. In comparison, the matrix B consists of the 
second derivatives of the expectation value for fixed CSF coefficients with respect 
to pairs of orbital rotations. Although the distinction between the meanings of 
these two arrays is rather subtle, this difference leads to important consequences. 
The most obvious of these differences is that in the neighborhood of a correct 
solution, the partitioned orbital hessian matrix is always positive semidefinite 
(i.e. there are no negative eigenvalues). This property is essentially a restatement 
of the eigenvalue minimization definition of the MCSCF wave function. That 
this is true for ground electronic stares is not surprising; the fact that it is also 
true for excited electronic stares leads to great simplifications in the optimization 
of excited states. (See Refs. [7] and [8] for further discussion of this issue.) 

The function, Et21(K), may also be considered as the second-order perturba- 
tion approximation of the eigenvalue of the hamiltonian matrix with elements 
Hmn = (rn ]exp( -K)H exp(K)In). This relation is useful when considering the 
form of higher-order coupling between the p and K vectors [7]. 

The straightforward use of Et21(K) to determine the orbital corrections is 
called the partitioned orbital hessian Newton-Raphson (PNR) optimization 
method. It should perhaps be mentioned that it is not necessary to actually invert 
the potentially large matrix M in order to use Eq. (2.9) as an approximating 
function. It is primarily for notational convenience that Eq. (2.9) is written in the 
folded form. Reference [7] may be consulted for details of the solutions to 
various orbital optimization equations using only subspace representations of the 
subblocks of the hessian matrix, the construction of which requires only the 
computation of matrix-vector products. 

When not in the neighborhood of a correct solution, the partitioned orbital 
hessian matrix may possess negative eigenvalues. However, the approximate 
energy expression EE21(K) cannot be used directly to move to regions of wave 
function variational space which have the desired positive-semidefinite hessian 
property. The nature of a second-order expansion is such that along any line 
(e.g. parameterized as tu for a fixed direction K) there is either an energy 
maximum or a minimum, but not both. The existence of a maximum along some 
line (implying at least one negative partitioned orbital hessian eigenvalue) 
indicates that the trial function is not in the neighborhood of a correct solution, 
but moving downhill in search of a minimum does not help since E[2]( tK) ~ - -  oo 
as t ~ + oe. Specifically, the approximating function El2J(tK) is unbound with 
constant second derivatives, and therefore it does not mimic, in these respects, 
the exact energy expression, which is not only bound but oscillatory along 
certain direction vectors K. 

To overcome this limitation of second-order expansions, several approaches 
have been taken. Among the first were mode-specific level-shifting methods [1 7]. 
The central idea of these methods is the identification of a subspace within which 
the accuracy of the local expansion is sacrificed in order to achieve qualitatively 
correct energy behavior in some nonlocal region. Such techniques had met with 
some success within the context of first-order-convergent single-configuration 
(SCF) schemes. However, these techniques require the input of several empirical 
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parameters for the subspace selection and subsequent local modifications. These 
parameters taust be chosen with great care, else the overaU convergence rate 
deteriorates inordinately. Generally, such schemes were found unsatisfactory, 
and their use has all but disappeared. 

Other approaches that address the global-convergence problems were based 
on the formal similarities between the hessian matrix and the matrix representa- 
tion of the hamiltonian operator in the first-order variational space. This space 
is defined as {(Epq - Eqp)]0), ]0), ]n)} with (p > q) essential. In modern termi- 
nology, this would be called an "internally contracted" single-excitation CI 
calculation. Experience had shown that these "Super-CI" (SCI) or "single-exci- 
tation-CI" optimization techniques were very reliable, yielding 2-3 correct 
decimals of energy in only a few iterations, starting with almost any set of initial 
orbitals [21-25]. However, SCI procedures ultimately display only first-order 
convergence, so convergence to 6-8 decimals in the wave function (equivalent to 
12-16 decimals in the energy), which is routine for second-order procedures, is 
impractical. Another difficulty with the traditional SCI approach was that the 
contraction of the hamiltonian operator was achieved only with some difficulty; 
although the methodology was never completely mature, the effort for the overall 
procedure scaled roughly as the product, 2 2 (Nc~Npq), where Ncs f is the MCSCF 
expansion length and Npq is the number of orbital rotations. This is in contrast 
to the commutator-based second-order methods whose effort typically scales 
only as the sum (N«~ + N2q) for the corresponding hessian and gradient con- 
struction steps. 

These observations led several researchers to the approximate SCI methods 
[9, 5, 16]. Like the true SCI methods, these methods result in an eigenvalue 
equation, with the wave function corrections being determined from the ele- 
ments of an eigenvector. In Ref. [7], general forms for these energy expressions 
are introduced by replacing the truncated second-order expansion with a ratio- 
nal function approximation. The form of the rational function is such that the 
first and second derivatives at the expansion point are unchanged (and, there- 
fore, exact). Consequently, these methods display rigorous second-order con- 
vergence, in contrast to the true internally contracted SCI methods which are 
only first-order convergent. Furthermore, the t ~ _+ oo asymptotic behavior is 
damped in such a manner as to keep the approximate rational energy function 
bound (although the bound is somewhat weaker than that of the internally- 
contracted SCI methods). In the case of the approximate SCI method based on 
the partitioned orbital hessian matrix (the PSCI method), this also ensures the 
existence of a single unique minimum of the approximating function, greatly 
simplifying excited state wave function optimization. The convergence 
neighborhood using the rational function is much larger than that of the 
truncated E [2], allowing convergence to be obtained with no empirical parame- 
ters in many cases for which the straightforward Newton-Raphson method is 
divergent. 

However, even the rational function approach does not eliminate all conver- 
gence problems, and additional level-shifting and/or vector-scaling is typically 
employed particularly in the initial MCSCF iterations [7]. The associated idea of 
a "trust radius" [26] has also been applied in order to limit the step size to within 
the well-approximated local region of wave function variation space [ 18]. In this 
approach, the level-shifting parameter is dynamically adjusted until the magni- 
tude of the computed correction vector is less than an empirically adjusted value. 
The vast majority of MCSCF wave function optimization procedures use such 



Global convergence of MCSCF wave function optimization: Trigonometric interpolation 61 

rational-function-based approaches, both when far from the desired solution 
and in the local neighborhood of the desired solution. 

Finally, the last approach to the global convergence problem relevant to the 
present work is the nonlinear exponential coordinate transformation [6, 19]. In 
this method, the energy is expanded to second order in the parameters Tts 
defined by: 

1 
T = U - I = ( e x p ( K ) - I ) = K + ½ K 2 + . . . ~ . . « " +  . . .  . (2.10) 

This approach has the feature that the approximate energy function E m is 
exact at the infinite number of points which satisfy the relation exp(K) = 1. By 
construction, the approximate energy function reproduces the exact first and 
second derivatives at this infinite number of isolated points also. Due to these 
features, E ~TJ may be regarded as a "global" approximating energy function, 
whereas the truncated energy functions and rational functions are only valid in 
a "local" region about the reference wave function. 

However, as implemented in [19], the approximating function E ~rl does 
not have the same redundant orbital rotation behavior as the exact energy 
expression. This results in unsatisfactory behavior when the wave function 
contains "almost" redundant variables, such as active orbitals with occupations 
only slightly less than two. In fact, as originally implemented, E Er1 was used 
only for the initial iterations, the final iterations being performed with one of 
the previously described Newton-Raphson procedures which display the cor- 
rect redundant orbital rotation behavior [6]. This characteristic of the E Er1 
method has been addressed [19], after noting that E Ex« t  is a fourth-order 
function of T, by including a sufficient subset of the third- and fourth-order 
expansion terms into the E Erj approximating function to overcome these con- 
vergence deficiencies. 

Another deficiency of this approach is that the true energy function is 
oscillatory along certain lines K, but the period should be r~ rather than 2n. For 
example, in the simple case of one orbital rotation parameter, the two-orbital 
subblock of the transformation matrix may be written as 

= (cos(~) -sin(~c)) 
U \sin(~c) cos0c)J" (2.11) 

At k = rc the exact energy, gradient, and hessian are identical to those at ~c = 0, 
since these quantities depend only on the relative, not the absolute, phase of the 
two orbitals. However, since 

but 

this periodicity is not automatically reproduced by an approximate energy 
expression based on a truncated T expansion. This incorrect behavior of E It1 
with respect to periodicity is displayed most clearly in Fig. 3 of Ref. [19]. 



62 R. Shepard 

3. Multidimensional trigonometric interpolation 

From the discussion of the previous section, it is clear that a global approximat- 
ing function is desirable, but to the extent possible, such a function should 
display the correct oscillatory behavior, the correct dependence on redundant 
orbital rotations, and it should be based on commutator expansions in order to 
provide smooth connections to other related theories (response theory, analytic 
energy derivative theory, etc.). 

General coordinate transformations of the form F(K), where F is analytic, 
are now considered. A more complete discussion of the choice of F(K) is given 
in Ref. [27]. The relevant conclusions are summarized here. 

K is a normal matrix (i.e. it commutes with its adjoint), and may be 
diagonalized by a unitary matrix V. The eigenvalues of K are purely imaginary 
and occur in complex-conjugate pairs, ( . . .  i2j, - @ . . . ) ;  the associated eigenvec- 
tors may also be paired, ( . . .  vj, v* . . . ) .  For odd matrix dimensions, at least one 
eigenvalue of K is zero, and its associated eigenvector may be chosen to be real. 
These observations allow the matrix K to be written in the forms: 

« =  V(ik)V t (3.1) 

1NT[Nor b/2] 

= ~. i2j(vjr] - v*v *t) + (0)roV~o (3.2) 
j = l  

where the last contribution in Eq. (3.2), included here for definiteness, only 
appears for odd dimensions. For notational simplicity, it is hereafter assumed 
that Norb, the dimension of K, is even in the remainder of this section, thereby 
allowing the (0)-eigenvalue term to be dropped in the following equations, 
although the final results will be correct in any case. It may be verified that each 
of the rank-2 contributions to K in the summation of Eq. (3.2) of the form, 
i2j(vjvJ - r ' v * * ) ,  is a real antisymmetric matrix. 

The expansion of the analytic function F may be written: 

F2 FùKù F(IO = Fol + F1K + ~  X2 + "  "~. + ' " .  (3.3) 

Following the heuristic derivafion of the rational function approaches, one of the 
truncated second-order energy expansions will be modified. The expansion based 
on the partitioned orbital hessian matrix of Eq. (2.9) is considered explicitly; the 
derivation of the wave function hessian expressions follows by analogy. Consider 
substitutions of the form Fr«(K) ~- K~«. In a one-dimensional example of EE21(K), 
i.e. f (x)~-K,  this results in 

Etel(~c) = E(0) + wf + ½ (B -- C M - '  C r )f2 (3.4) 

EtFI(~C)' = w(f ')  + (B -- C M - 1 C T ) f  ( f  ") (3.5) 

EtF3(x) , ,  = w ( f ' )  + (8  -- C M - 1 C T ) ( f ( f " )  + (f,)2). (3.6) 

B and ware  scalars, and C is a row vector in these equations. The derivatives, 
denoted with primes, are with respect to the scalar x in these equations. In order 
for EtF3(0)= E(0) to be satisfied for arbitrary w and ( B -  C M - I C  T) in Eq. 
(3.4), it follows that f ( 0 ) =  F0 = 0. Similarly, for EtF3(0)' = w in Eq. (3.5), it 
follows that f ( 0 ) '  = F1 = 1. Finally, for E[F](0) " =  ( B -  CM-1C T) in Eq. (3.6), 
it follows that f (0 ) "  = F2 = 0. These conditions carry over to the multidimen- 
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sional approximating function EEFI(r), resulting in the conditions F0 = 0, F1 = 1, 
and F2 = 0 in the matrix expansion of Eq. (3.3). In fact, the conditions on Fo and 
F2 are satisfied automatically if F(K) is simply chosen to be antisymmetric, 
simplifying the Frs ~Krs association. (In general an odd scalar function F(x)  
implies an antisymmetric matrix function F(11; this association will be used 
interchangeably in the following discussions.) 

It may be noted that the T expansion described in the previous section 
already violates the antisymmetry requirement, along with the F z = 0 condition, 
and therefore is not a candidate expansion form for the present work. This is one 
reason for the relatively complicated iterative procedure required to optimize 
EErl; much effort is devoted to "correcting" the second-order terms induced by 
the nonzero F2 terms in T(11 at the expansion point K = 0. 

Finally, it is desired for the approximate function to be oscillatory in 
K = (Ko + tA) with period t = n. There are, of course, an unlimited number of 
ways to define such a function. In order to mimic EExa«t[exp(K)] as closely as 
possible, the functions exp(211 and exp( -211  might be considered. Each of 
these would have the correct periodicity, but they possess nonzero Fo and F2 
terms. However, these undesired contributions may be eliminated by taking the 
sum (exp(211 - e x p ( -  211). This function satisfies all of the requirements except 
for the F1 = 1 condition, which is easily restored by scaling to give the final 
coordinate transformation: 

F(11 = ¼ (exp( 211 - exp( - 211) = ½ sinh(211. (3.7) 

The relation sinh(ix)= i sin(x) allows the antisymmetric matrix F(K) to be 
written as: 

F( K) = ½ Vi sin(2k) V* (3.8) 

displaying clearly the oscillatory behavior of the function F(11. 
Defining the vector f as the essential, unique elements of the antisymmetric 

matrix F(11 allows the approximate global interpolating function to be written 
as: 

EVIF(K) = E( O) + fVw  + ½fr(B -- C M - 1 c T ) f  (3.9) 

Although only second-order in f, this approximate energy function is infinite- 
order in the orbital rotation parameters K. Note also that, due to the use of the 
partitioned orbital hessian, this functional form implies a relation f«si= 
- M - ~ C V f  (compare to Eq. (2.8)), showing that the (implicit) CSF rotation 
parameters p -F«s  f (f«sf) (with an herein unspecified mapping F~-~()) are also 
infinite-order and oscillatory in the rotation parameters K. It should be stressed 
that the form of Eq. (3.7) is by no means unique. Indeed general combinations 
of terms of the form 1/2n sinh(2n11 may be chosen to satisfy the above, rather 
liberal, constraints imposed on the coordinate transformation. 

Due to the form of Eq. (3.8), the method currently described is herein called 
multidimensional trigonometrie interpolation, or more briefly, trigonometrie inter- 
polation, and the interpolating function of Eq. (3.9) is called the trigonometrie 
interpolating funetion (TIF). 

The one-dimensional function, Eq. (3.4), may now be written explicitly as 

ETSF(I¢) = E( O) -I- ½w sin(2tc) + I (B - C M - l C r )  sin2(2~c) (3.10) 

= E(0) + ½w sin(2tc) + I ( B  - C M - 1 C r ) ( 1  - cos(41c)). (3.11) 
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The last form in particular reveals that the ~c dependence of the interpolating 
function consists of a combination of two terms: a sin(2~c) term with period rc 
whose contribution is determined by the magnitude of the gradient w, and a 
cos(4~c) term of period zc/2 whose contribution is determined by the magnitude 
of the (scalar) second-derivative (B - C M - 1 c T ) .  Normally it would be expected 
that when far from convergence, the gradient component would dominate the 
functional behavior, and when close to convergence, the shorter-period (higher- 
frequency) hessian term would dominate. However, as will be seen later, the 
hessian terms are sometimes dominant even when far from convergence, such as 
near maxima or (in higher dimensions) saddle points. It can also be sëen from 
Eq. (3.11) that at convergence, w = 0, the interpolating function will have purely 
period re/2 behavior. In most cases, such ~ behavior would be spurious, as E ~x«t 
is expected usually to display period g behavior. This is not detrimental to the 
optimization problem for which E TIF is herein developed, but it should be taken 
into consideration if E rIF were to be extended beyond this limited application 
(e.g. to MCSCF response theory application). Another feature of E TIF, which is 
apparent from inspection of Eq. (3.10), is that a minimum is closer than n/4 to 
the expansion point only when 2]w ]< ](B - C M - i C  r) [; otherwise, the gradient 
terms dominate E TIF, and the "coordinate-induced" minimum at _+ re/4 (with the 
sign determined by the signs of ( B -  C M - 1 C  T) and w) is the minimization 
solution. 

The above arguments are now extended to the general multidimensional case. 
Suppose a solution has been found to the orbital transformation equation 
exp(tK) = S in which S is a diagonal sign matrix with elements S,ùù = _+ 6mù. The 
variables to be considered are the line direction, determined by the matrix K, and 
the distance along this line from the origin parameterized by the scalar t. At 
points tK which satisfy the general equation, it follows that EEX«t(0)= 
EeX«t(tK) since, as argued previously, the energy is independent of orbital 
phases. The most general sotutions to this equation are unknown to the author 
at the present time. In the absence of a general solution, several special cases will 
be discussed. 

Examine first E Ex«t for a two-parameter orbital transformation of the form: 

K = k«~e «~ + k~ve "v. (3.12) 

The matrices of the form e «~ are infinitesimal generator coordinates of the 
rotation group, and in order to avoid confusion with the unitary group genera- 
tors Epq which are hilbert space operators, these matrices will herein be called 
simply rotation coordinates. These are antisymmetric matrices constructed from 
unit vectors as e«P=(e«(eß)r-eß(e«) r) with, for example, e ~ being the c-th 
column of the unit matrix (e«)j = 6ic. Consider first the cases in which none of 
the rotation coordinate labels are coincident, i.e. « ¢ fl ¢ # ~ v. In this case, 
[e «~, e uv] = O, and the associated orbital transformation factors according to: 

U = exp(K) = exp(k«~e «~) exp(kuveU~ ) = exp(k~~e "~) exp(k«~e «p) (3.13) 

allowing the two individual factors to be considered independently. Con- 
sequently, by generalizing the previous single-parameter arguments, 
EeX~«(k«a = O, kù~ = O) = EeX~«t(mrc, nzc) for arbitrary integers m, n. This defines 
a regular 2-dimensional grid of knots (using spline terminology) on the plane 
defined by cartesian product of the rotation coordinates e «p ® e "~, and the orbital 
transformation matrix is sinusoidal on this grid with period 2re. This results in an 
oscillatory E e~««t which is periodic in this plane with period re. 
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In order to determine the behavior of the transformed coordinates 
F(K) = ½ sinh(2K), it is recognized that since e «# and e "v commute they may be 
diagonalized simultaneously by some unitary matrix V. This allows sinh(2K) to 
be written in the factored form: 

sinh(2K) = sinh(2k«B e «p + 2k~v e ~~) (3.14) 

= cosh(2k«/3e ca) sinh(2k~~e u~) + sinh(2k«Be «~) cosh(2kùveUV). (3.15) 

Recognizing the identity, cosh(ix) = cos(x), this factored form demonstrates that 
the transformed coordinates are periodic along both coordinate directions within 
the plane with period re. This behavior results in an oscillatory E TIF o n  the plane 
with period r~. Therefore in the plane, both E Ex«t and E TzF display oscillatory 
behavior with period Te. 

This argument is now extended to the general multidimensional case by 
adding all possible patterns of mutually commuting rotation coordinate matrices 
in the definition of K. These grid patterns may be labeled by taking all possible 
sets of pairs of integers from the range [1 . . .  Norb]. This results in 

N[Gria](Norb ) = ~(Nor b - 1)!! ;Norbeven (3.16) 
[Nor  b !! ;Not b odd  

possible grid patterns for a given matrix dimension Norb. Each such grid pattern 
defines a cartesian product subspace of dimension INT[Norb/2], and within each 
of these subspaces both E Exa«t and E TIF a re  oscillatory with period rc along each 
rotation coordinate direction. 

To clarify this subspace concept, consider some specific examples. In a 
2-orbital case, there is NtC~;a](2)= 1 subspace of dimensionality Norb/2 = 1 ( a  
line). This is the trivial case considered previously. In a 3-orbital case, there are 
NE°~iaJ(3) = 3 cartesian subspaces, each of dimensionality INT[No~b/2] = 1; in 
other words there are three lines within the full space along which both E exa«` 
a n d  E TIF are oscillatory with period re. These lines are along the coordinate axes 
e 2~, e 3~, and e 32. In a 4-orbital case, there are NEG~;<(4) = 3 cartesian subspaces, 
each of dimensionality Norb/2 = 2; in other words, there are three planes within 
the full space on which both E Ex«t and E TIF display oscillatory behavior with 
period z. These planes are specified by the rotation coordinate pairs (e 2~ ® e43), 
(e 31 ® e42), and (e 41 ® e32). 

Next, the energy behavior along particular lines consisting of linear combina- 
tions of noncommuting rotation coordinates is exarrlined, and it is shown that the 
approximating function displays the qualitatively correct oscillatory behavior. 
Specifically, consider the behavior of Echot(K),  ETIF(K), exp(K), and F(K) along 
the lines parameterized with the scalar t according to K = (K o + tA). The real, 
antisymmetric matrices tA are constructed as: 

tA  = tV(im) V* -= t ~ im#(v#v] - v*v**)  (3.17) 
J 

with {m#]j = 1, 2 . . .  Norb/2) being a set of integers, m --- diag( . . ,  ms., - m j  . . . .  ), 
and vj the eigenvectors of Ko. For the special case, K o = 0, any set of orthonor- 
mal vectors satisfying the pairing condition may be used. (A rotation coordinate 
direction is a special case given by a pattern in which all m s are zero except for 
a single element, which has the value of unity, and by a particular choice of 
vectors V. As noted previously, in these cases E ~~«t and E TIg both display t = n 
periodicity.) 
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For simplicity, only sets {m} for which the elements are either all even or all 
odd are considered. As discussed further below, this is more restrictive than 
necessary, but these sets of direction patterns are sufficiently flexible for the 
present demonstration purposes. According to the construction given above, 
[K0, A] = 0, thereby admitting the factorizations: 

exp(K o + tA) = exp(K0) exp(tA) (3.18) 

and 

sinh(2K 0 + 2tA) = sinh(2K0) cosh(2tA) + cosh(2Ko) sinh(2tA). (3.19) 

Diagonalization of exp(tA), cosh(2tA), and sinh(2tA) reveals the oscillatory 
behavior of these quantities as a function of t. For example, the matrix: 

exp(tA) = V exp( i tm)V* = ~ exp(i tmj)vjv]  + exp( -itmj)v*v** (3.20) 
J 

is oscillatory along the line with period t = 2~. At t = 2n~, exp(tA) is a unit 
matrix, +1.  At t = (2n + 1)~, the matrix exp(tA) is diagonal of the form +1, 
with the sign determined by whether the mj values of the direction pattern are 
even or odd. Using the argument that E Exa«t is independent of these orbital 
phases, it follows that E «x«t is oscillatory along the line tA with period t - - ~ .  
Similarly, diagonalization of sinh(2tA) and cosh(2tA) in Eq. (3.19) reveals that 
F(K) is oscillatory with period t = ~z. It then follows from this oscillatory nature 
of the coordinates, that E rtF is oscillatory with period ~. In this sense, E ex«t and 
E TIF display the same periodic behavior along lines parameterized by tA of the 
form of Eq. (3.19). It is mentioned in passing that since odd Norb bases taust 
have a zero A eigenvalue, t = ~ periodicity is displayed generally only by 
even-(m) direction patterns in this case. Several examples of this behavior are 
demonstrated in Sect. 5. 

If  a direction pattern (m) contains both mixed even and odd integers, then 
the resulting E «~a«t generally is oscillatory only with period t = 2~. (There rnay 
also exist mixed direction patterns {m} for which exp(tA) is diagonal with mixed 
+ 1 diagonal elements occurring at regular intervals t = n~; this is the case with 
the coordinate grid patterns discussed previously. Other exceptions involving 
redundant orbital rotations are discussed in the following section.) For the 
period t = 2~ cases however, since sinh(2tA) and cosh(2tA) both have period 
t = ~, the resulting E TIF displays incorrect t = ~ periodicity. The correction of 
this behavior within the interpolating function E TzF does not appear simple. 
However, it should be noted that even in the worst situation, this causes a step 
to be somewhat shorter than optimal only when large steps are being taken. 
Since these large steps are to the least-accurate regions of the approximate E rIF 
energy surface, it remains to be seen the extent to which this behavior adversely 
affects the convergence. 

4. Redundant orbital rotations 

It is the usual practice to remove explieitly the redundant orbital rotation 
variables from the wave function variational space. In particular, with an 
appropriate ordering of the orbitals, the orbital rotation matrix K takes a 
"block-oft-diagonal form" [28], and the vector ~ contains only the unique 
nonzero entries of K. The "diagonal-blocks" correspond to invariant orbital 
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subspaces [ 13, 15]. To examine the effects of redundant orbital rotations on the 
approximating function E TIF, suppose that, for some reason, this explicit elimi- 
nation has not been done for at least one orbital rotation variable. 

In Ref. [7] it is shown that, when the CSF gradient vector is zero, the 
gradient components corresponding to redundant orbital rotations vanish, and 
that all matrix elements of  the partitioned orbital hessian matrix corresponding 
to pairs of redundant rotations vanish. 

w(m = 0 ;(rs) redundant (4.1) 

( B - C M - I C T ) ( p q ) , ( r s )  - = 0  ;(rs) redundant, (pq) redundant. (4.2) 

This implies that the contributions to the approximate E r~F of the form (w(mf(rs)) 
and (f(pq~(B- CM-1Cr)(pq).(r«)f(rs)) vanish just as they do for E Ex«t. It is also 
shown in Ref. [7] that for oft-diagonal elements of  the partitioned orbital hessian 
matrix the relation: 

(B - C M - l C T ) ( x y ) , ( r s )  = Wry(~«x + Wsx6ry -~- Wxröys "[- Wys(~xr (4.3) 

holds for (rs) redundant and (xy) arbitrary. For the coordinate grid patterns 
discussed previously (i.e. x # y  # r ~ s), these oft-diagonal elements are also 
zero. The contributions to E vzF of  the form (f(xy)(B-CM-1CT)(xy).(rs)f(rs)) 
vanish just as they do for E gxa«t. That is, not only does E rlF display the correct 
oscillatory behavior, but it also displays the correct invariance to the redundant 
rotation coordinate value within the mutually-commuting, cartesian-product 
subspace. 

These relations demonstrate the conceptual advantage of formulating E rzF in 
terms of the partitioned orbital hessian matrix instead of  the wave function 
hessian matrix. There are no similar relations to Eqs. (4.2) and (4.3) on the 
matrix elements of B, C, or M taken individually; it is due to a subtle 
cancellation of contributions within individual matrix elements that these rela- 
tions are satisfied. 

As a final example of the effects of redundant orbital rotation operators, 
assume now that the wave function possesses some invariant orbital subspace. 
Let an arbitrary element of the redundant orbital rotation subgroup be denoted 
by V tRl. Further assume that E Exact and E TzF a r e  invariant to rotations among 
the orbitals within this subspace, E~X«t(0) = EEx«ct[vER1] = ET1F(O)= ETZF[vtR1]. 
Suppose there exists some matrix K involving essential (i.e. nonredundant) 
rotations such that EEx«*(0)= E~X««[exp(K)] = Er*F(0) = ET~F[exp(K)] are also 
satisfied. Such a matrix K could be a knot point on a cartesian-product subspace 
grid, or at a t = n~ point corresponding to some direction pattern {m}, of  the 
previous sections. The important characteristic of  K for the present argument is 
that the energy invariance results from the general properties of wave function 
invariance, such as discussed in the previous sections, and not on some acciden- 
tal numerical relationship. It is now asserted that the relations EEX«t(0)= 
Ee~«t[ V fR1 exp(K) V fRJt] = ETIF(O) = ETIF[ V [R] exp(K) V ERI*] also hold. 

This assertion rests on the following interpretation of the above product. Let 
the first V ER~ define a passive rotation of the original coordinate system. In this 
context, a passive rotation is associated with an integral transformation and 
adjustment of the CSF coefficient vector, such that all quantities are expressed 
relative to this new coordinate system. Since V ER1 is an element of the redundant 
subgroup, the relations, Ee~«t(O) = EÆXa«t[ V Ig]] --- ETIF(O) = ETZF[ VtR~], still hold. 
The matrix exp(K) then defines a point within the rotated coordinate system. If  
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the invariance property is independent of the orbital basis, then the relations, 
EeX«t(0) = EeX«t[V rRl exp(K)] and ErIF(O)= ErlF[Vt«I exp(K)], will still hold in 
this new coordinate system, just as they did in the original system. The last V ~R1* 
then rotates passively the coordinate system back to the original orientation, 
again leaving the energy unchanged. In this picture, the essential rotations are 
associated with coordinate axes, whereas the redundant rotations V tRl are 
associated with rotations of these axes about the origin. The final result is that 
E Ex«t and E rIF a r e  invariant to the matrix product, (V tRl exp(K)VERIt), and this 
relation must also hold if the matrix product is considered in the active sense. 
Therefore, any rotation matrix which is similar to another rotation matrix which 
is known to display energy invariance by one of the previous arguments, and for 
which the transformation matrix V IRI belongs to the redundant orbital rotation 
group, will also display energy invariance. 

Since V tRl is chosen independently of K, the behavior of the energy does not 
depend on the matrix elements of V tRl. Different choices for V wl, would result in 
different rotations of the point exp(K) to the new point (V E~1 exp(K) Vw1*), all of 
which satisfy E(0) = E . . . .  t[exp(K)] = Æ . . . .  t[ Vwl exp(K)V ER1*] = ETIF[exp(K)] : 
ErXF[V wl exp(K)Vwlt]. This structure results in a denumerably infinite sequence 
of multidimensional nested balls, on the surface of which the reference energy is 
reproduced. If the matrices exp(K) and V tRl commute, then the energy-equiva- 
lence relation is trivially satisfied, in that the representation of exp(K) in both the 
original and rotated systems is the same. Since the representation of the point K 
is the same in both coordinate systems, the rotation V tRl does not induce a nested 
ball structure. Therefore, the dimensionality of the surface of the balls is 
determined by the number of redundant orbital rotation parameters in the ware 
function which do not commute with the contributing rotation coordinate 
matrices in the matrix K. 

In a sense, this oscillatory behavior is independent from that which results 
from the direction patterns {m} of the previous section, being more intimately 
connected with the wave function expansion form rather than simply the orbital 
transformation matrix. Indeed, direction patterns {m} with mixed even-odd 
integers do not normally result in t = rc periodicity (displaying instead only 
period t = 2re behavior). However, in the presence of redundant orbital rotations, 
it is possible for the "offending" terms in the even-odd set to be flattened, leaving 
only the coherent, period t -- 7r terrns remaining to contribute to the energy. An 
example of this behavior is given in the hext section. 

This discussion is concluded by pointing out that this nested ball structure is 
shared by both E exa«t and E rre. These common features lend further support to 
the argument that E rzF is a desirable approximating function to E exa«t with 
which to interpolate between the surfaces of the nested balls or between the 
isolated points for which E r l e =  E e~a«'. Future work will be directed towards a 
deeper understanding of the nature of this interesting structure of MCSCF wave 
functions. 

5. Numerieal examples 

Some of the features of coordinate transformations that have been discussed in 
the previous sections will now be demonstrated. For this purpose, it is conve- 
nient to define a model hamiltonian with which several model MCSCF optimiza- 
tion problems will be constructed. For simplicity, a three-orbital basis is chosen. 
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Table  i .  The  mode l  h a m i l t o n i a n  integrals  a 
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(r, s) = (1, 1) (2, 1) (2, 2) (3, 1) (3, 2) (3, 3) 

hrs = - 2 . 0 0  0.10 - 1.75 0.10 0.10 - 1.50 

gllrs = 0.80 . . . . .  
g2~r~ = --0.18 0.27 . . . .  

g2»« = 0.52 -- 0.17 0.70 - -  - -  - -  

g31rs = --0.16 0.03 --0.12 0.26 - -  - -  

g32rs = --0.11 0.02 --0.14 0.01 0.25 - -  
g33rs = 0.50 --0.  I0  0.51 --0.15 --0.13 0.60 

a Only  the canonica l  integrals  are specified. Uni t s  are E h 

This has the advantage of allowing sufficient complexity to realize some of the 
more subtle points discussed above, while avoiding some of the conceptualiza- 
tion difficulties associated with higher dimensionality. Table 1 displays the 1-e 
hamiltonian and 2-e repulsion integrals for this model hamiltonian. With these 
integrals, all of the results of this section may be reproduced and examined in 
more detail by the reader. It should perhaps be mentioned in passing that these 
integrals were originally taken from a CH + cation calculation with four electrons 
frozen in the core and with all but the lowest three remaining sigma orbitals 
deleted. The integrals from this calculation were "simplified" to the final form 
given in Table 1. Consequently, these results should model typical electronic 
structure calculations. 

It is first demonstrated that E Exa« is oscillatory along the rotation coordinate 
directions for a general MCSCF wave function. For this purpose, a two-CSF 
singlet expansion space, defined as {]300), 1030)} using step-vector notation 
[7, 20], is employed. There are no redundant orbital rotations with this expansion 
space, and consequently the energy depends on all three essential orbital rotation 
coordinates, e 21, e 31, and e 3z. In Fig. 1 the ground-state MCSCF energy is shown 
as a function of t along each of these three coordinates. It may be seen in 
particular that the energy is oscillatory with period t = n along all three 
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coordinates. In fact, in the te 2~ direction, the energy is actually oscillatory with 
period t = n/2. This is a consequence of the symmetric appearance of orbitals 1 
and 2 in the CSF expansion space; at every t = n/2 increment, the two expansion 
CSFs essentially swap roles. According to the previous analysis for this three- 
orbital problem, there are no more cartesian grids which are periodic, since 
N[6ridJ(3) = 3, and there are no higher-dimensionality subspaces, such as planes, 
which are periodic, since I N T [ 3 / 2 ]  = 1. 

Next, consider E Exa« along an arbitrary line within the plane defined by the 
e 31 and e 32 coordinates. The line tA may be parameterized by an angle 0 as 
A = cos(0)e 31 + sin(0)e 32. With this parameterization, it may be verified that the 
eigenvalues of A are ( + i, 0) and are independent of 0. The plot in Fig. 2 is for 
0 = - n / 5 .  This plot shows clearly that E ex« t  is only oscillatory with period 
t = 2n for this case. As discussed in Sect. 3, the energy along a line with a mixed 
even-odd direction pattern, {1, 0} in this case, is not expected to display t = n 
periodicity except in special cases. For this model problem, it may be verified 
that 0 = +_n/4 are such special cases and do, in fact, result in t = ~ periodicity 
(again a consequence of the role-swapping of the two expansion CSFs). However 
even in the general case, it would appear quite reasonable to a p p r o x i m a t e  the 
curve in Fig. 2 with a period t = zr oscillatory function, since the exact function 
is "almost" t = zc periodic; this approximation is exactly what is done by the E TIF 

interpolating function. 
In order to test the periodicity arguments given in Section 3, the behavior of 

E exa«t along lines tA parameterized by A = 2(cos(0)e  31 + sJn(0)e 32) is now exam- 
ined. With this scaling, A has eigenvalues ( + 2i, 0), corresponding to the all-even 
direction pattern of {2, 0}. Figure 3 shows plots for 0 = -7r/5. With this scaling 
of the coordinates (compared to Fig. 2), the curve is now oscillatory with period 
t = T C .  

The effects of redundant variables are considered next. With the chosen 
model hamiltonian, this may be achieved by expanding to the 3-CSF expansion 
space {1300>, 1120>, 1030>}. This is, of course, a 2-orbital/2-electron full-CI 
expansion space, so the rotation e 21 is now redundant. Figure 4 is analogous to 
Fig. 1 for the 2-CSF expansion space, showing the ground state energy, E ex«t, 
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along each of the three orbital rotation coordinates. As expected, EeX«t(te21) = 
EeX«t(O) for all values of t. The energy dependence along the other two coordinate 
directions is unchanged qualitatively compared to the 2-CSF case, although 
quantitatively all of  the energy values are now lower due to the bracketing 
theorem [7]. 

Figure 5 displays the 3-CSF E~xaa(tA) along the lines A = COS(0)e 31 + sin(0)e 32 
for 0 = +re/5, ___2rc/5. The 0 = - - n / 5  curve in particular may be compared 
directly to the 2-CSF curve in Fig. 2. It is seen that the introduction of the 
redundant orbital rotation coordinate e 21 causes the energy to display t = rc 
periodicity in all four curves, even for the mixed even-odd direction pattern { 1, 0}. 
There are two ways to interpret this feature. The first is to note that any matrix 
of the form 

( °0 ° -~~' ) o = 0 - k 3 2  , 

k31 k32 
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is similar to a matrix of the form (: 0~) 
0 0 , 

[k I 0 0 

using a plane Givens rotation in the e l ®  e 2 plane. In this transformed basis, the 
representation of A obviously leads to periodic behavior, and since the Givens 
rotation is within the redundant orbital rotation group, the original representa- 
tion of A must also be oscillatory with period t = n. This argument generalizes 
quite readily to arbitrary matrices of the form A = (enx T x(en)r) for arbitrary 
dimensions No, b. With [ x ] = l ,  V=(1--(2/yTy)yyT)(1--2el(el) r) and y =  
x + [ x l e  1, A is seen to be similar to the matrix e "1, leading trivially to an 
oscillatory energy with period t = n. As long as x contains nonzero elements only 
in rows corresponding to the invariant orbital subspace, and n corresponds to an 
orbital that is not in this set, then the given product of Householder matrices is 
an element of the redundant orbital rotation subgroup. 

The other interpretation is to start with the matrix (~0 ~) 
A 31 = 0 ' 

0 

which trivially leads to oscillatory energy with period t = ~, and then to rotate a 
point n~A 3~ about the origin with an arbitrary element of  the (one-parameter) 
redundant orbital rotation subgroup parameterized by the angle - 0 .  This 
subgroup matrix may be written as VERl=exp(--Oe21). The desired result, 
V~R]A 3~ V tRl* = A, follows immediately. In this simple example, the close relation 
between these two points of view is almost trivial; eren the same algebraic 
manipulations are used in both cases, although in slightly different orders. In this 
second interpretation, it is clear how, as a function of 0, a series of points nrcA 3~ 
are mapped into a series of nested circles. The dimensionality of  the surfaces of 
the nested balls is determined by the number of redundant orbital rotation 
operators (i.e. 1 in this example). 
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A more direct verification of this effect may be seen by plotting the energy on 
a circle of  radius n within the e3I® e32-plane. In Fig. 6, the 2-CSF and 3-CSF 
energies are displayed on the curve tA with A = cos(0)e31 + sin(0)e 32 at fixed 
t = n as a function of 0. The 3-CSF energy is invariant on this curve, whereas the 
2-CSF energy is oscillatory. This is a clear demonstration of the nested ball 
structure of the 3-CSF MCSCF energy in the presence of a redundant orbital 
rotation coordinate; this same constant-energy plot would be obtained at 
t = 2re, 3re , . . .  n n . . .  

The 3-CSF functions E ex«t and E TIF along the line tA with A=  
cos(0)e31 + sin(0)e 32 for 0 = - re /5  will now be examined in detail. This particu- 
lar angle is chosen because, from among the curves in Fig. 5, it has the most 
complicated structure to be approximated. The solid line in Figs. 7a -7d  is the 
same as the 0 = - n / 5  curve in Fig. 5, and the broken lines are some of the local 
energy approximations discussed in Section 2. E[2](tA) is a simple parabola which 
always reproduces the energy, gradient, and hessian at the expansion point. In 
these cases, the rational function approximation is given by EPSCZ(tA)= 
E(0) + (E[2](tA) -E(O)) / (1  + t2). This function also reproduces the energy, gra- 
dient, and hessian at the expansion point, hut displays quite different t ~ + oo 
behavior from E t2I. It is immediately clear from these graphs that the "local" 
approximating functions, E 12J and E esc~, are indeed only accurate within a rather 
small neighborhood of the expansion point, whereas E rIF displays periodic 
behavior, and thereby reproduces correctly the energy, gradient, and hessian not 
only at the expansion point, but also at an infinite number of points displaced by 
nrc from the expansion point. 

In Fig. 7a, the expansion point, to = 0, is close to the minimum of the surface. 
It may be observed that when the reference point is near any of the (equivalent) 
minima on the curve, then E rlF predicts quite accurately the behavior of  the 
energy in the regions near the minima. At this expansion point, all three 
approximating functions, E rIF, E E2], and E escl, describe well the position of  the 
nearest minimum. As discussed previously, as the gradient becomes small, the 
higher-frequency, period n /2  contributions from the hessian are overestimated in 
the E rlF curve. This results in the shallow, high-energy minimum, displaced 
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about ~/2 from the minimum in E Ex«', being predicted to have approximately 
the same energy as the minimum. 

In Fig. 7b, the expansion point, to = -0 .5 ,  is somewhat further away and is 
about midway between the energy minimum and the maximum. The hessian is 
small and positive at this expansion point. The E rzr behavior is dominated by 
the period r~ gradient contribution, this time underestimating the period r~/2 
behavior from the hessian and missing entirely the high-energy structure of the 
E Exact  c u r v e .  The position of the minimum is predicted fairly well by Erze. E r2] 
clearly does not predict the behavior near the minimum; this expansion point is 
outside of the radius of convergence for the straightforward Newton-Raphson 
iterative procedure. At this expansion point, E »sc" still approximates the posi- 
tion of the nearest minimum reasonably well. 

In Fig. 7c, the expansion point, to = -0.625,  is slightly further still from the 
minimum. The hessian is small and negative at this expansion point. Both the 
high-energy structure and the position of the minimum are approximated 
reasonably well by E rzF. E r21 cannot predict the position of the minimum, but it 
does predict accurately the position of the nearest maximum. E escz  also predicts 
accurately the position of the maximum, but the predicted minimum, at approx- 
imately 2.97 is nowhere near the position of the nearest minimum. Empirical 
trust-radius constraints would be required in order to converge reliably to the 
nearest minimum using either local-approximation method. 
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In Fig. 7d, the expansion point, to = - 0 . 8 4 ,  is close to the energy maxi- 
mum. Again, E t21 has no minimum and the E »sc* minimum (at approximately 
20.36) does not predict even qualitatively the real position of the nearest 
minimum. The TIF approximates not only the neighborhood of the maximum, 
but also the positions of both nearby minima. Since the gradient contribution is 
relatively small at this expansion point, the period ~/2 hessian contribution is 
again overestimated. If  the expansion point had been chosen exactly at the 
maximum, then pure period ~/2 behavior would have been predicted, and the 
predicted energies at the two minima would have been equal. It may be inferred 
from this property of E T1F that only the positions of the nearest minima are 
expected to be predicted accurately, and that the relative energies of the 
nonequivalent minima are not quantitatively accurate. It remains to be deter- 
mined what information about the other predicted minima can be extracted 
from E TIF. 

It is encouraging that as the reference point is moved away from the 
minimum, the position of the approximate E TIF minimum is usually very close to 
the actual minimum, although the computed approximate energy value at this 
minimum is not always quantitatively accurate. For the purpose of optimization, 
it is of course the location of the minimum that is most important, and not the 
quantitative prediction of the energy value at that point. 

A more complete view of the 3-CSF E Ex«t surface is given with the contour 
plot in Fig. 8. For reasons to be discussed below, the plot coordinates have been 
chosen relative to the point (k°l, k°2) = ( -  1.5, 0.0). Specifically, the value at a 
eoordinate point (k31, k32) corresponds to E Ex«t defined with the transformation 
uTotal: 

Ur°'"l(k31, k32) = exp( - 1.5e 3l) exp(k31 e 31 + k32 e 32) (oo),~/o o?) 
= 0 exp 0 0 - 32 

e x p - 0 5  0 \k31 k32 
(5.1) 

relative to the basis integrals of Table 1. (In reproducing the results of this 
section, the reader should note in particular that since [e 31, e 32] ~ 0 ,  then 
UT°«al(k31, k32) ¢ exp((k31 -- 1.5)e 31 + k32e32).) As a eonsequence of this shift, the 
origin of Fig. 8 is slightly on the downhill side of the maximum on the surface, 
and is approximately on the steepest-descent path toward the saddle point. 

The oscillatory behavior along lines tA may be observed direetly from the 
contour plot of Fig. 8 as follows. From any point (k3~, k32) draw a line through 
the origin. All points (k;1, k;2) on this line that are a distance of nn from 
(k3~, k32) will have the same energy. Using this geometrical model, a set of 
closely spaced points near the origin is seen to map onto a set of widely spaced 
points near the circle of radius ~ centered at the origin - a lever-arm effect which 
results in the overall general landscape of the contour plot. The origin point 
itself, maps exactly onto the circles at radius nn, providing the geometrical 
representation of the nested ball structure. 

From this geometrical representation, it may be verified that the two minima 
of the surface at approximately ( - 1 . 5 , - 0 . 3 )  and (1.5, 0.3) are actually two 
equivalent representations of the same wave function. Similarly, the three 
maxima at approximately (0.4, -0.5) ,  ( - 1 . 5 ,  1.9), and (2.4, -3 .0)  are actually 
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three equivalent representations of the same wave function. It is this global 
oscillatory behavior that the TIF-based MCSCF optimization presented in this 
work attempts to exploit. 

An alternative view of the 3-CSF E Ex«t is given in Fig. 9. Such a graph is 
called a "Random Dot Stereogram" [29, 30]. To view this image, the reader 
should place the graph on a flat surface at a comfortable reading distance. Focus 
past the actual surface, until the two guide dots at the bottom of the graph are 
seen as four dots (i.e. two dots for each eye). Adjust the focus point until the two 
"middle" dots merge together and three dots are perceived. When the three-dot 
pattern is stable, the reader may slowly look up to the graph and perceive the full 
three-dimensional character of the surface. With a few minutes of practice, the 
typical viewer can dispense with using the guide dots and can focus almost 
instantly on the three-dimensional image itself. It should also be mentioned that 
the larger the graph, the more dramatic is the effect. Enlarged copies of the graph 
may be produced quite easily with an office copy machine, and the integrity of 
the image is reduced insignificantly with repeated enlargements. 

As plotted in Figs. 8 and 9, the constant-energy circle at radius rc is seen to 
cut across the north face of the southeast peak, passing through a high saddle 
point around to the north face of the northwest peak, then passing through 
another image of the high saddle-point back to the north face of the bottom 
peak. Although the origin is not a saddle point, the two high-energy saddle 
points are actually images of the origin point. It may be verified that if w(0) va 0, 
then images of the origin at two points on each nrc-circle will be saddle points. 
This is because the hessian at these two points in polar coordinates has the form 
(o ,h'°)resulting in a positive and a negative eigenvalue when transformed back 
~ö the k31-k32 coordinate system. The two equivalent minima to the southwest 



Global convergence of MCSCF wave function optimization: Trigonometric interpolation 77 

Fig. 9. Random Dot 
Stereogram of 3-CSF 
E Ex««t. Compare to the 
contour plot of this same 
surface shown in Fig. 8 

and northeast are connected with two equivalent low-energy saddle points to the 
northwest and southeast, approximately at the coordinates ( - 0 . 9 ,  1.1) and 
(1.0, -1 .3) .  The energies and coordinates of these surface features are given in 
Table 2. These surface features will be used for reference as the problem of 
MCSCF optimization on this surface is considered. 

6. MCSCF optimization 

Optimization of the MCSCF wave function using the method of trigonometric 
interpolation proceeds according to the following steps. 

DO 
(1) Compute E(0), w, and optionally B, C, and M for the current 

orbitals, defined by U. This involves the partial integral transforma- 
tion, solution of  the hamiltonian eigenvector, density-matrix con- 
struction, and optionally, the construction of the matrices B, C, and 
M. 

(2) Optimize K on E r~F as defined in Eq. (3.9). This is a nonlinear 
optimization step, and may itself involve (micro-)iterative procedures 
of  various kinds. K is computed relative to the current orbitals. 

(3) Check for convergence, and EXIT if appropriate. 
(4) Update U new = U °ra exp(K). 

ENDDO 
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Table 2. E ~zx«t sur face  fea tu res  a 

R.  S h e p a r d  

D e s c r i p t i o n  E n e r g y / E  h k» 1 k32 

M i n i m a  - 3 .362113258981 4 .6036283989  0 .9895685549  

1 .5321927067 0 .3293510230  

- 1 .5392429855 - 0 . 3 3 0 8 6 6 5 0 8 9  

- 4 . 6 1 0 6 7 8 6 7 7 7  - 0 . 9 9 1 0 8 4 0 4 0 9  

L o w - e n e r g y  - 3 .283000398520  - 2 .8617781006  3 .6234151099 

sadd le  po in t s  - 0 . 9 1 4 6 1 0 5 6 1 8  1 .1580260987 

1 .0325569770 - 1 .3073629124 

2 .9797245159 - 3 .7727519236 

H i g h - e n e r g y  - 2 .917251878752  - 3 .0119508693 - 0 .8931720751 

sadd le  po in t s  0.0 0.0 

(axes  or ig in)  3 .0119508693 0 .8931720751 

M a x i m a  - 2 . 7 8 8 2 2 0 8 9 3 5 8 7  - 3 . 5 1 7 9 0 1 9 2 6 9  4 .3073900388  

- 1 .5306681700 1 .8741809650 

0 .4565655868  - 0 .5590281087  

2 .4437993437 - 2 .9922371825 

a Al l  c o o r d i n a t e s  a re  relat ive to  the  i n t e rmed ia t e  o rb i t a l  bas is  e x p ( -  1.5e 31) 

There are, of course, various ways to optimize the nonlinear function E T1F in 
step (2) of the above sequence. The most efficient are those which utilize not only 
the approximate energy, ErlF(Ko), at various expansion points Ko, but also the 
derivatives, 

OETIF K=Ko 02ETIF K=Ko. OK~~ and possibly OK«~ OK~,v 

Of these, the most practical and useful methods are subspace methods which 
require only matrix-vector products of the matrices B, C, and M with trial 
vectors. For small problems, these matrices may be explicitly constructed, and 
the required products computed directly with the stored matrices. For problems 
involving larger basis sets and/or larger CSF expansion spaces, these matrix-vec- 
tor products may be computed using 1-index transformation and transition 
density matrix techniques. See Ref. [7] for further discussion of these details. As 
shown in Ref. [27], under these conditions, the construction of the matrix F(Ko), 
and the required first and second derivative contributions, 

0F(K) x =/<o 8 2 F ( K )  K = 
OK«ô and OK«~ OKay xo' 

require only O(N3orb) computational effort. 
In the present work, it is mentioned only that a rational-function-based 

optimization method with dynamic level-shifting (a slight variation of the usual 
PSCI MCSF optimization procedure), is used herein to optimize E 77F. TO date, 
there have been no unexpected difficulties in any of these optimizations, but it is 
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Table 3. MCSCF optimization using trigonometric interpolation 
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(k31 , k32)  a ( -- 1.50, --0.48) ( -- 1.45, --0.62) (1.0, -- 1.0) (0.0, 0.0) (0.725, --0.75) 

Hessian b 2 .2888521138 2 .284340525  1 .8292524009 0.3189427581 --0.6113559802 
Eigenvalues 0.0870895590 0 .023280740 --0.4363317324 --0.1772591097 --2.8577918026 

1 -3.3603960748 -3.3561962157 -3.2112067263 --2.9172518787 --2.8602918655 
2 -3.3620151864 -3.3544485010 -3.5083150188 --5.0333225484 --5.2708583480 
3 -3.3621131802 --3.3620602613 -3.3606462404 --3.2918719500 --3.3325673816 
4 -3.3621132589_ -3.3621132557 -3.3621002529 --3.3291123418 --3.3615851643 
5 -3.3621132589_ -3.3621132572 --3.3617290940 -3.3621119396 
6 -3.3621132589 --3.3621124779 -3.3621152589_ 
7 --3.3621132589 

a The initial starting points are relative to the intermediate orbital basis exp ( -  1.5e 31) 
b Hessian eigenvalues at the minimum are 2.2972896439 and 0.1491485099 

anticipated that more efficient methods, particularly those which exploit the 
known nonlinear nature of E TIF and which reduce the number of required 
matrix-vector products, will be developed in the near future. 

In Table 3, examples of the overall convergence using the trigonometric 
interpolation method with various initial guesses are presented. The first row of 
Table 3 gives the coordinates of the initial starting point (again relative to the 
exp(-1.5e 31) intermediate basis). The second two rows of Table 3 are the 
hessian eigenvalues at the initial starting point, relative to the intermediate 
orbital basis. In this basis, the eigenvalues of the hessian at the minimum are 
2.2972896439 and 0.1491485099. (For completeness, the hessian eigenvalues are 
2.3125549489 and 0.3672649727 in the converged orbital basis. This difference 
is due to a "fish-eye" type of distortion of the coordinate system as the origin 
is translated with the e 3 1 @  8 32 plane.) The subsequent rows of Table 3 are the 
energies of each MCSCF iteration. 

The first calculation in Table 3 is chosen to typify a situation for which 
reasonable starting orbitals are available, for example, from a nearby geo- 
metry on a potential energy surface. This starting point corresponds to a 
rotation of the minimum in the e31® e 32 plane about the origin by lr/32, or 
about 5.6 °. The hessian contains all positive eigenvalues, and the eigen- 
values are not significantly different from those at the minimum. The straight- 
forward Newton-Raphson procedure also converges for this starting point, 
and in the same number of iterations as the new trigonometric interpolation 
method. The energy residual in the fourth iteration is about 7.0.10 14E h, 
thereby verifying numerically the second-order convergence of the TIF-based 
MCSCF method. 

The next column in Table 3 corresponds to a rotation of ~r/16, or about 
11 °. Although the initial hessian is positive definite, the straightforward 
Newton-Raphson procedure does not converge from this starting point. In 
fact, the first iteration of the TIF procedure oversteps with a maximal rota- 
tion of re/4, indicating that the period re/2 contributions from the hessian 
matrix are underestimated in E TIF. An iteration could be saved by damping 
this step, hut since one of the goals of the TIF optimization procedure is 
the elimination of such empirical adjustments, such damping was not employ- 
ed in any of the calculations of Table 3. Future work will examine the 
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possibility of eliminating these spurious large steps in a well-founded, nonem- 
pirical, manner. 

The third column of Table 3 corresponds to an initial point near the 
low-energy saddle point of the surface. The initial hessian matrix has a positive 
and a negative eigenvalue, characteristic of the saddle point region. The initial 
energy is about 95 kcal/mol higher than the minimum, a value which is outside 
of what might be considered "normal" starting orbitals for MCSCF optimiza- 
tion. Nonetheless, the TIF procedure succeeds in locating the quadratic region 
of the minimum. 

The fourth column of Table 3 corresponds to the rather complicated region 
of the energy surface near the origin of Figs. 8 and 9. The hessian matrix in 
this region possesses mixed positive and negative eigenvalues, but it is not in 
the vicinity of a saddle point. (However, as mentioned previously, isolated 
images of the origin generally do correspond to saddle points.) Inspection of 
the second root of the hamiltonian in this region reveals that this complicated 
structure is due to a crossing of the lowest two roots within the e 31 @e 32 wave 
function variational space. The local minimum and the other high-energy 
features shown in the line plots in Figs. 5 and 7 are also due to this crossing. 
This crossing can be seen distinctly in Figs. 8 and 9, in which an other- 
wise smooth surface appears "sliced-off" in the region near the origin (and 
its images). Consequently, the origin represents a rather difficult starting point 
for optimization, since the gradient and hessian describe qualitatively this 
anomalous local surface patch rather than that associated with the low-energy 
surface regions. The first iteration succeeds in moving away from the maximum 
of the surface, but the E TIF minimum erroneously lies almost on top of the 
actual saddle point. It is because of this feature that the origin of the plots of 
Figs. 8 and 9 are chosen as they are; this provides a stringent test of the 
method, and moves the interesting region of the surface to where these details 
are most readily observed. Maximal re/4 steps are taken during the first three 
iterations, and thereafter the reference point moves into the region of the 
minimum. 

The last column of Table 3 corresponds to an initial point that is close to the 
maximum, but on the other side of the peak from the complicated root-crossing 
region discussed above. The initial hessian has two negative eigenvalues. A1- 
though the initial energy is higher than that of the previous calculation (over 
300 kcal/mol above the minimum), this actually represents a somewhat easier 
optimization problem. The first step is again a maximal r~/4 step, picking up 
250 kcal/mol at once, and then the subsequent steps wind around the curved 
path into the quadratic region of the minimum. 

Considering some of the complications of this model surface, the TIF 
optimization method does quite well at optimizing the energy from various 
starting points, particularly within low-energy regions that are connected simply 
to the neighborhood of the minimum. When not in the low-energy region, the 
best behavior appears to be observed when the initial point possesses comparable 
contributions from both the gradient and hessian terms. If the hessian contribu- 
tions are relatively small, then maximal re/4 steps are taken, and although these 
are often fruitful, they sometimes lead to overstepping or oscillatory behavior. If 
the gradient contributions are small relative to the hessian terms, then the 
high-frequency period ~/2 contributions from the hessian appear to be overesti- 
mated within E rIF. This is observed in particular if the initial guess is exactly at 
one of the saddle points or at a maxima. In all cases examined so far, the effects 
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on the MCSCF convergence of this undesired behavior can be eliminated with 
the imposition of stepsize restrictions, indicating that this does not appear to be 
an insurmountable problem inherent with the interpolation procedure. It is 
hoped, however, that these remaining problems can be addressed using nonem- 
pirical approaches. 

7. Discussion and conclusions 

As mentioned in the previous sections, there are several features of the new 
MCSCF optimization method which should be examined more fully. These 
include the development of more efficient optimization schemes for the E rIF 
optimization within an MCSCF iteration. Another issue to be addressed is the 
"spurious" nature of the re/2 periodicity of E rIF when the gradient is small at the 
expansion point. One possible approach involves the incorporation of informa- 
tion from previous MCSCF iterations into the current E rzF. For example, by 
generalizing the functional forms of E TIF and/or F(K), it is possible to reproduce 
exactly energies and gradient vectors determined from previous iterations at the 
appropriate nonexpansion points. Another interesting possibility would be to 
solve for the CSF correction vector p to infinite-order for fixed-order F(K), and 
then to update the densities directly from this relaxed wave function correction. 
Such schemes have been proposed for the other MCSCF methods (for a more 
complete discussion, see Ref. [7] and references therein) as a way to reduce the 
number of expensive repulsion-integral transformation steps, particularly for 
large orbital-basis-function sets. 

MCSCF methods that have been examined in the past and that proved 
ineffective in the context of local expansions, might now be reexamined in the 
context of the global interpolating function approach. The iterative incorpora- 
tion of higher-order derivatives at the expansion point is one such likely 
candidate for reexamination. 

The trigonometric interpolation method has been presented primarily in the 
context of energy minimization. As mentioned in the previous sections, such 
interpolation methods may also be useful in following other stationary solu- 
tions, e.g. in a region of geometry space at which multiple MCSCF solutions 
exist. Finally, although the present work has been presented from the point of 
view of general MCSCF wave function optimization with second-order con- 
vergence, it is of course straightforward to apply these methods to the special 
case of single-configuration SCF wave function optimization and perhaps also 
to cases in which the second derivatives are approximated in some reliable 
manner. 

The present understanding of the periodic nature of E Exact is based on 
rather pedestrian, linear algebra, concepts. Although several special cases have 
been analyzed, it is somewhat disconcerting that a single general formalism, 
which unites all of these cases in a simple manner, has not yet been found. It 
might be anticipated that some of the powerful methodology of Lie algebras 
and group theory can be used to understand this problem, and such an 
investigation is currently underway. Hopefully, new insights into the periodic 
nature of E Ex«t gained in this manner can be incorporated into the interpolat- 
ing function E rIF. Therefore, rather than solving all global convergence prob- 
lems of MCSCF methods, the current work is expected to be only an initial 
step in this new direction. 
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In summary, a new method of MCSCF wave function optimization has 
been described. This new method is based on multidimensional trigonometric 
interpolation of the energy within a coordinate space which is a nonlinear 
transformation of the individual orbital rotation parameters. The interpolating 
function reproduces exactly the energy, gradient, and hessian at the expansion 
point, and, due to its periodic nature, also at an infinite number of isolated 
points within the wave function variational space. Similarities between the 
coordinate transformation and the orbital coefficient transformation result in 
the interpolating function also reproducing the exact energy behavior on regu- 
lar grids within multidimensional, cartesian-product subspaces of the full wave 
function variational space. The number of such subspaces and their dimension- 
alities are discussed. In the presence of redundant orbital rotations, the interpo- 
lating function and the exact function also share several properties involving 
continuous coordinate variations. These properties include a multidimensional 
nested ball structure and the invariance to wave function changes along partic- 
ular lines within the full space. Numerical examples of MCSCF optimization 
show that it is possible to converge to energy minimum solutions starting from 
essentially arbitrary orbitals without resorting to the use of empirical stepsize 
restrictions. 
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